alternative fuels such as DEE, biomass, alcohols, etc. It provides valuable information about alternative fuel utilization in IC engines. Use of combustion simulations and optical techniques in advanced techniques such as microwave-assisted plasma ignition, laser ignition, etc. are few other important aspects of this book. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike. This book offers a collection of original peer-reviewed contributions presented at the 6th International Congress on Design and Modeling of Mechanical Systems (CMSM’2015), held in Hammamet, Tunisia, from the 23rd to the 25th of March 2015. It reports on both recent research findings and innovative industrial applications in the fields of mechatronics and robotics, dynamics of mechanical systems, fluid structure interaction and vibroacoustics, modeling and analysis of materials and structures, and design and manufacturing of mechanical systems. Since its first edition in 2005, the CMSM Congress has been held every two years with the aim of bringing together specialists from universities and industry to present the state-of-the-art in research and applications, discuss the most recent findings and exchange and develop expertise in the field of design and modeling of mechanical systems. The CMSM Congress is jointly organized by three Tunisian research laboratories: the Mechanical Engineering Laboratory of the National Engineering School of Monastir; the Mechanical Laboratory of Sousse, part of the National Engineering School of Sousse; and the Mechanical, Modeling and Manufacturing Laboratory at the National Engineering School of Sfax. This text, by a leading authority in the field, presents a fundamental and factual development of the science and engineering underlying the design of combustion engines and turbines. An extensive illustration program supports the concepts and theories discussed. This volume constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2015, held in Hyderabad, India, in December 2015. The 23 full papers presented in this volume were carefully reviewed and selected from 40 submissions for inclusion in the proceedings. The papers cover a wide range of topics in swarm, evolutionary, memetic and other intelligent computing algorithms and their real-world applications in problems selected from diverse domains of science and engineering. This book discusses different types of alternative fuels, including biodiesel, alcohol, synthetic fuels, compressed natural gas (CNG) and its blend with hydrogen, HCNG, and provides detailed information on the utilization of these alternative fuels in internal combustion (IC) engines. Further, it presents methods for production of these alternative fuels and explores advanced combustion techniques, such as low-temperature and dual-fuel combustion, using alternative fuels. It includes a chapter on the soot morphology of biodiesel, which focuses on the toxicity. There are also four chapters on hydrogen-fueled engines, which discuss use of hydrogen in IC engines and also provide important information on the methodologies. This book is a valuable resource for researchers and practicing engineers alike. This book discusses
the recent advances in combustion strategies and engine technologies, with specific reference to the automotive sector. Chapters discuss the advanced combustion technologies, such as gasoline direct ignition (GDI), spark assisted compression ignition (SACI), gasoline compression ignition (GCI), etc., which are the future of the automotive sector. Emphasis is given to technologies which have the potential for utilization of alternative fuels as well as emission reduction. One special section includes a few chapters for methanol utilization in two-wheelers and four wheelers. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.

Compendium of Hydrogen Energy: Hydrogen Energy Conversion, Volume Three is the third part of a four volume series and focuses on the methods of converting stored hydrogen into useful energy. The other three volumes focus on hydrogen production and purification; hydrogen storage and transmission; and hydrogen use, safety, and the hydrogen economy, respectively. Many experts believe that, in time, the hydrogen economy will replace the fossil fuel economy as the primary source of energy. Once hydrogen has been produced and stored, it can then be converted via fuel cells or internal combustion engines into useful energy. This volume highlights how different fuel cells and hydrogen-fueled combustion engines and turbines work. The first part of the volume investigates various types of hydrogen fuel cells, including solid oxide, molten carbonate, and proton exchange membrane. The second part looks at hydrogen combustion energy, and the final section explores the use of metal hydrides in hydrogen energy conversion. Highlights how different fuel cells and hydrogen-fueled combustion engines and turbines work Features input written by leading academics in the field of sustainable energy and experts from the world of industry Examines various types of hydrogen fuel cells, including solid oxide, molten carbonate, and proton exchange membrane Presents part of a very comprehensive compendium which, across four volumes, looks at the entirety of the hydrogen energy economy The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on “Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering”. The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.

Diesel engines, also known as CI engines, possess a wide field of applications as energy converters because of their higher efficiency. However, diesel engines are a major source of NOX and particulate matter (PM) emissions. Because of its importance,
five chapters in this book have been devoted to the formulation and control of these pollutants. The world is currently experiencing an oil crisis. Gaseous fuels like natural gas, pure hydrogen gas, biomass-based and coke-based syngas can be considered as alternative fuels for diesel engines. Their combustion and exhaust emissions characteristics are described in this book. Reliable early detection of malfunction and failure of any parts in diesel engines can save the engine from failing completely and save high repair cost. Tools are discussed in this book to detect common failure modes of diesel engine that can detect early signs of failure.

Foundation of Mechanical Engineering is solely written with the view to help B.E. I year students to master the difficult concepts. Needless to emphasise, this new book has been designed a self learning capsule. With this aim in view, the material has been organised in a logical order and lots of solved problems and line diagrams have been incorporated to enable students to thoroughly master the subject. It is believed that this book, solely for B.E. I year students of all branches of Engineering, will captivate the attention of senior students as well as teachers.

Now in its fourth edition, Introduction to Internal Combustion Engines remains the indispensable text to guide you through automotive or mechanical engineering, both at university and beyond. Thoroughly updated, clear, comprehensive and well-illustrated, with a wealth of worked examples and problems, its combination of theory and applied practice is sure to help you understand internal combustion engines, from thermodynamics and combustion to fluid mechanics and materials science. Introduction to Internal Combustion Engines: - Is ideal for students who are following specialist options in internal combustion engines, and also for students at earlier stages in their courses - especially with regard to laboratory work - Will be useful to practising engineers for an overview of the subject, or when they are working on particular aspects of internal combustion engines that are new to them - Is fully updated including new material on direct injection spark engines, supercharging and renewable fuels - Offers a wealth of worked examples and end-of-chapter questions to test your knowledge - Has a solutions manual available online for lecturers at www.palgrave.com/engineering/stone

This book comprises select peer-reviewed proceedings of the 26th National Conference on IC Engines and Combustion (NCICEC) 2019 which was organised by the Department of Mechanical Engineering, National Institute of Technology Kurukshetra under the aegis of The Combustion Institute-Indian Section (CIIS). The book covers latest research and developments in the areas of combustion and propulsion, exhaust emissions, gas turbines, hybrid vehicles, IC engines, and alternative fuels. The contents include theoretical and numerical tools applied to a wide range of combustion problems, and also discusses their applications. This book can be a good reference for engineers, educators and researchers working in the area of IC engines and combustion.

Hydrogen has been recognised as a universal, clean fuel which is expected to provide energy to our homes, industry and automobiles in the future. It is considered as one of the most
interesting alternatives to petroleum fuels. A considerable amount of research and development work on production, storage and transportation, and utilisation of hydrogen is in progress all over the world. In India, several institutions have been working on the various aspects of the hydrogen considering it as an energy vector. A three-day National Workshop on Hydrogen Energy was organised at Indian Institute of Technology (IIT) Delhi to focus attention on developments in hydrogen energy at national and international levels and to provide a forum to coordinate contemporary research trends in the country in this field. The presentations made at the Workshop covered the topics which are considered to be of significance to work out the perspective, problems and promises for the future for transition to hydrogen energy. The proceedings of the Workshop are reported in this book, which include the inaugural address, description of the national research and development programme in the field of hydrogen energy, papers presented on production, storage and transportation, and utilisation of hydrogen and the panel report. In the inaugural address, emphasis is laid on the need for a transition from the presently used fuels to the newer ones, preferably to those which are renewable and non-polluting such as hydrogen. The need for cleaner, sustainable energy continues to drive engineering research, development, and capital projects. Recent advances in combustion science and technology, including sophisticated diagnostic and control equipment, have enabled engineers to improve fuel processes and systems and reduce the damaging effects of fuels on the environment. With scientific developments, certain new technologies based on such scientific principles have now been adopted worldwide. This has resulted in complete or partial eradication of some old technologies. Changes in technologies have become more apparent after the mid-twentieth century. The world prosperity has improved now, and constraints of the Second World War are no longer felt. Thus the light production using incandescent lightbulb has now become a thing of the past, while fluorescence-based light production has resulted in saving large amounts of generated electric power. Thermal steam-powered (coal-based) locomotive are now completely replaced by diesel and electricity-powered locomotives. Technological changes are constantly being reported in the news. Even before this book was published, in which the replacement of electronic tubes (valves) by silicon-based transistors was included as a chapter, now there is report of carbon nanotubes replacing transistors. In agriculture, there has been a report of a genetically engineered plant (TomTato) that shall produce both potatoes and tomatoes. Human memory is short-lived. The purpose of the present book is to demonstrate such changes, with selected examples only. I hope more of the younger generation shall learn that the technologies, which they are now using, had their old predecessors. Human memory is short-lived. The new generation may not be aware of a once-useful technology getting extinct or being replaced due to the development of a better and stronger new technology. Examples of such changes are numerous, but here we have only used selected examples to illustrate such
changes. Biofuels such as ethanol, butanol, and biodiesel have more desirable physico-chemical properties than base petroleum fuels (diesel and gasoline), making them more suitable for use in internal combustion engines. The book begins with a comprehensive review of biofuels and their utilization processes and culminates in an analysis of biofuel quality and impact on engine performance and emissions characteristics, while discussing relevant engine types, combustion aspects and effect on greenhouse gases. It will facilitate scattered information on biofuels and its utilization has to be integrated as a single information source. The information provided in this book would help readers to update their basic knowledge in the area of "biofuels and its utilization in internal combustion engines and its impact Environment and Ecology". It will serve as a reference source for UG/PG/Ph.D. Doctoral Scholars for their projects / research works and can provide valuable information to Researchers from Academic Universities and Industries. Key Features: • Compiles exhaustive information of biofuels and their utilization in internal combustion engines. • Explains engine performance of biofuels • Studies impact of biofuels on greenhouse gases and ecology highlighting integrated bio-energy system. • Discusses fuel quality of different biofuels and their suitability for internal combustion engines. • Details effects of biofuels on combustion and emissions characteristics. AIRCRAFT AND AUTOMOBILE PROPULSION: A Textbook covers basic concepts of automobile and aircraft propulsion i.e. thermodynamics, heat transfer and reciprocating engines alongside concept of system, description of conjugate properties, parametric study of thermodynamic cycle, sensitivity analysis of cycle efficiency, numerical methods for 2-D heat conduction, fin analysis and testing of automobile engines. Meant for the undergraduate course on Power Plant Engineering studied by the mechanical engineering students, this book is a comprehensive and up-to-date offering on the subject. It has detailed coverage on hydro-electric, diesel engine and gas turbine power plants. Plenty of solved examples, exercise questions and illustrations make this a very student friendly text. This book introduces the reader to fundamentals of engine combustion processes and pollutant formation Combustion thermodynamics, conceptual and thermodynamic engine combustion models, fluid motion in the cylinder, the conventional and advanced combustion systems such as for DISC, CAI, and HCCI engines are discussed. For a wider coverage on the subject, emission measurement alternative propulsion systems are included in this text. Laser based and other combustion diagnostic techniques are outlined to introduce readers to modern combustion research methods. The book attempts to present theoretical aspects and the practices including the latest developments in engine and emission control technology. The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats
physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software development - Control of gasoline engines, control of air/fuel, ignition, knock, idle, coolant, adaptive control functions - Control of diesel engines, combustion models, air flow and exhaust recirculation control, combustion-pressure-based control (HCCI), optimization of feedforward and feedback control, smoke limitation and emission control

This book is an introduction to electronic engine management with many practical examples, measurements and research results. It is aimed at advanced students of electrical, mechanical, mechatronic and control engineering and at practicing engineers in the field of combustion engine and automotive engineering. This book comprises select proceedings of the International Conference on Emerging Trends in Mechanical Engineering (ICETME 2018). The book covers various topics of mechanical engineering like computational fluid dynamics, heat transfer, machine dynamics, tribology, and composite materials. In addition, relevant studies in the allied fields of manufacturing, industrial and production engineering are also covered. The applications of latest tools and techniques in the context of mechanical engineering problems are discussed in this book. The contents of this book will be useful for students, researchers as well as industry professionals. This Book Can Be Used As A Text Book For The Under Graduate As Well As Post Graduate Curriculum Of Different Universities And Engineering Institutions. Working Personnel, Engaged In Designing, Installing And Analyzing Of Different Renewable Energy Systems, Can Make Good Use Of This Book In Course Of Their Scheduled Activities. It Provides A Clear And Detailed Exposition Of Basic Principles Of Operation, Their Material Science Aspects And The Design Steps. Particular Care Has Been Taken In Elaborating The Concepts Of Hybrid Energy Systems, Integrated Energy Systems And The Critical Role Of Renewable Energy In Preserving Today'S Environment. References At The End Of Each Chapter Have Been Taken From Publications In Different Reputed Journals, Recent Proceedings Of National And International Conferences And Recent Web Sites Along With Ireda And Teri Reports. This is the revised edition of the book with new chapters to incorporate the latest developments in the field. It contains approx. 200 problems from various competitive examinations (GATE, IES, IAS) have been included. The author does hope that with this, the utility of the book will be further enhanced. Providing a comprehensive introduction to the basics of Internal Combustion Engines, this book is suitable for: Undergraduate-level courses in mechanical
engineering, aeronautical engineering, and automobile engineering. Postgraduate-level courses (Thermal Engineering) in mechanical engineering. A.M.I.E. (Section B) courses in mechanical engineering. Competitive examinations, such as Civil Services, Engineering Services, GATE, etc. In addition, the book can be used for refresher courses for professionals in auto-mobile industries. Coverage Includes Analysis of processes (thermodynamic, combustion, fluid flow, heat transfer, friction and lubrication) relevant to design, performance, efficiency, fuel and emission requirements of internal combustion engines. Special topics such as reactive systems, unburned and burned mixture charts, fuel-line hydraulics, side thrust on the cylinder walls, etc. Modern developments such as electronic fuel injection systems, electronic ignition systems, electronic indicators, exhaust emission requirements, etc. The Second Edition includes new sections on geometry of reciprocating engine, engine performance parameters, alternative fuels for IC engines, Carnot cycle, Stirling cycle, Ericsson cycle, Lenoir cycle, Miller cycle, crankcase ventilation, supercharger controls and homogeneous charge compression ignition engines. Besides, air-standard cycles, latest advances in fuel-injection system in SI engine and gasoline direct injection are discussed in detail. New problems and examples have been added to several chapters. Key Features Explains basic principles and applications in a clear, concise, and easy-to-read manner Richly illustrated to promote a fuller understanding of the subject SI units are used throughout Example problems illustrate applications of theory End-of-chapter review questions and problems help students reinforce and apply key concepts Provides answers to all numerical problemsThis brief provides an overview on the most relevant nonlinear phenomena in internal combustion engines with a particular emphasis on the use of nonlinear circuits in their modelling and control. The brief contains advanced methodologies –based on neural networks and soft-computing approaches among others– for the compensation of engine nonlinearities by using the combustion pressure signal and proposes several techniques for the reconstruction of this signal on the basis of different engine parameters, including engine-block vibration and crankshaft rotational speed. Another topic of the book is the diagnosis of the nonlinearities of injection systems and their balancing, which is a mandatory task for the new generation of gasoline direct injection engines. The authors come from both industrial and academic backgrounds, so the brief represents an important tool both for researchers and practitioners in the automotive industry.

Copyright code: ae1f3a9a184d01fafeadd134f28103a5